urbanlc.model.pipeline_transforms.MSSTransformer#

class urbanlc.model.pipeline_transforms.MSSTransformer(means=[58.52628466445192, 63.99713552734609, 73.72406260655546, 67.19410871327327, 0.0], stds=[20.506525138881113, 32.3602409954395, 33.81779753120669, 30.294028783169907, 1.0])#

Input Preprocessor for Landsat data from MSS sensor (Landsat 1 - 5).

Methods

calculate_statistics([root, filename_glob, ...])

Calculate mean and standard deviation statistics of the dataset.

transform(img, mask[, is_training, p_hflip, ...])

Apply transformations to the input Landsat image and land cover.